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Motivation What is it all about?

“Begin at the beginning and go on till you come to the end; then stop.”

– The King, Alice’s Adventures in Wonderland, Lewis Carroll

¥ Route-Planning Problem

Given two positions in a road map, find the op-
timal path between them with respect to given
optimality criteria.

¤ be fast
¤ be accurate
¤ be reasonable
¤ be memory efficient

Example: find the fastest path from Belfast to Bear Haven.
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Introduction Route-Planning Problem

¥ road maps are represented by a specific class of graphs - road map graphs

¤ almost planar, low average degree, very sparse, self-loops, parallel-edges, etc.
¤ huge graphs - millions of vertices and edges
¤ contain maneuvers – prohibited (forbidden) paths M ∈ M

¥ if a path does not contain any maneuver as its subpath, it is called M-admissible

¥ route-planning ⇐⇒ an instance of a well-known SPSP problem
¤ Dijkstra’s algorithm – O(|E(G )| + |V (G )| log log |V (G )|)

¥ in general good result, for road map graphs very slow and memory inefficient

¥ modern approaches use precomputed data to speed-up path searching

¤ preprocessing – executed once in a while on a powerful computer
¤ queries – executed on mobile device very often

¥ heuristics are favored in practice – the exact paths usually involve issues
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Our Approach Introduction

¥ two-level heuristic approach based on notions of a scope and a cell

¤ Scope – a discrete mapping S : EG 7→ {0, s1, s2,∞} ⊆ R
+
0 ∪{∞}, 0 < s1 < s2 < ∞.

¥ assigned arbitrarily, e.g. according to road types
¥ reflects importance of an edge in the global sense
¥ must satisfy certain conditions to be applicable and efficient

G [E↾S(e)∈{∞}
(G)], G [E↾S(e)∈{∞,s2}

(G)], G [E↾S(e)∈{∞,s2,s1}
(G)] strongly-connected

¤ Cell – let (T ′, ν ′) be a partitioned branch-decomposition of a road map graph G ,
a cell is a subgraph C ⊆ G such that C = G [ν ′(l ′)], where l ′ is a leaf of T ′.

¥ boundary of a cell is a set of vertices that separates it from other cells, i.e. guts
Γ(e) of e, where e is the edge between l ′ and its parent

¤ Boundary Graph – a highly reduced abstraction of a road map graph.

¥ vertices – cell boundaries
¥ edges – paths inside cells between boundary vertices using ∞ scope edges only
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Our Approach S-admissibility

¥ An edge e ∈ E(G ) is S-admissible for some path P = s · · · u · e · v · · · t in a road
map graph G if and only if the distance traveled from s to u or from v to t on
edges of the scope higher than S(e) is less or equal than S(e). Path P is
S-admissible in G if all its edges are S-admissible for P in G .

v0 vn

S = s2 S = ∞

v1

S = s1

vi+1vi

eA

eB

eC

admissible

S(eA) = ∞,

admissible

S(eB) = s2,

admissible ⇔|Pv1vi
|≤s1∨|Pvi+1vn |≤s1

S(eC ) = s1
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Our Approach Outline of the Algorithm
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Experimental Work: Preprocessing Example

Partitioned branch-decomposition respects natural road map disposition.

New Haven, CT, United States
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Experimental Work: Preprocessing Results

Preprocessing of 10 largest road maps in the United States.

Road Map G |E(G)| |E(BG)| Reduction Cells Time

Arizona 2 184 866 12 504 0.572% 420 25 min
Georgia 2 226 392 25 870 1.162% 400 14 min

New York 2 236 530 33 358 1.492% 422 47 min
Oklahoma 2 508 862 15 917 0.634% 436 23 min
Missouri 3 020 152 23 578 0.781% 519 34 min

Pennsylvania 3 081 096 29 411 0.955% 574 26 min
Virginia 3 333 864 33 854 1.016% 479 20 min
Florida 3 488 194 22 254 0.638% 655 30 min

California 5 394 762 16 002 0.297% 1 010 86 min
Texas 7 194 984 34 076 0.474% 1 336 135 min

(average cell size if 5 000 edges)
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Experimental Work: Query Example

Search from the green source to the red target, the optimal S-admissible path is blue, the

optimal path is magenta. Vertices and edges visited during our search are light blue,

during bidirectional Dijkstra search by light magenta.

Colorado, CO, United States.
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Experimental Work: Query Comparison

Traditional comparison with Dijkstra’s algorithm.

Road Map Accuracy Speed-up Visited Vertices Queue Size

Mississippi 98.3% 8 5623 / 185656 93 / 979
Idaho 98.1% 13 5159 / 290825 75 / 967

Kentucky 98.7% 8 6829 / 306304 325 / 1001
Tennessee 98.1% 10 5705 / 376629 97 / 983
Indiana 97.2% 10 5645 / 398078 145 / 1287

Minnesota 97.8% 6 5397 / 409200 124 / 1382
Georgia 97.7% 9 6293 / 530537 238 / 1549

Oklahoma 96.6% 8 6150 / 549373 123 / 1525
Ohio 98.1% 8 6413 / 577428 341 / 1560

Missouri 97.9% 8 6320 / 641253 123 / 1647
Pennsylvania 97.8% 8 6012 / 692769 205 / 1697

California 97.9% 9 6114 / 1147015 129 / 1973

(average cell size is 5 000 edges)
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Conclusion Where are we and where can we go?

¥ new heuristic two-level route-planning approach has been developed

¤ intended for computationally weak mobile devices and real-world road maps
¤ based on the original notion of scope and well-known cell search technique
¤ cells correspond to the road map graph partitioned branch-decomposition
¤ provably optimal SM-admissible path from the source to the target is found

¥ preprocessing

¤ efficient, fast and scalable – approx. 2 hrs to preprocess Texas with 7M edges
¤ auxiliary data of reasonable size – approx. 1% of the road map graph size

¥ queries

¤ computing memory efficient – small queue size, less vertices are visited
¤ accurary is good enough for practice – 98% at average
¤ considerable speed-up – approx. 9 w.r.t Dijkstra’s algorithm

¥ possible extensions: time-dependent route-planning, higher hierarchy

¥ future work: dynamic road maps, scope refinement
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Thanks for your attention!
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